Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase.

نویسندگان

  • A A Finegold
  • K P Shatwell
  • A W Segal
  • R D Klausner
  • A Dancis
چکیده

A plasma membrane iron reductase, required for cellular iron acquisition by Saccharomyces cerevisiae, and the human phagocytic NADPH oxidase, implicated in cellular defense, contain low potential plasma membrane b cytochromes that share elements of structure and function. Four critical histidine residues in the FRE1 protein of the iron reductase were identified by site-directed mutagenesis. Individual mutation of each histidine to alanine eliminated the entire heme spectrum without affecting expression of the apoprotein, documenting the specificity of the requirement for the histidine residues. These critical residues are predicted to coordinate a bis-heme structure between transmembrane domains of the FRE1 protein. The histidine residues are conserved in the related gp91(phox) protein of the NADPH oxidase of human granulocytes, predicting the sites of heme coordination in that protein complex. Similarly spaced histidine residues have also been implicated in heme binding by organelle b cytochromes with little overall sequence similarity to the plasma membrane b cytochromes. This bis-heme motif may play a role in transmembrane electron transport by distinct families of polytopic b cytochromes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation of the heme axial ligand of Escherichia coli succinate-quinone reductase: implications for heme ligation in mitochondrial complex II from yeast.

A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate-ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, ex...

متن کامل

Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX e...

متن کامل

Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle.

The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endoso...

متن کامل

Structural Changes and Proton Transfer in Cytochrome c Oxidase

In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that contro...

متن کامل

Prolonged Exposure to LPS Increases Iron, Heme, and p22 Levels and NADPH Oxidase Activity in Human Aortic Endothelial Cells Inhibition by Desferrioxamine

Objective—Vascular oxidative stress and inflammation are contributing factors in atherosclerosis. We recently found that the iron chelator, desferrioxamine (DFO), suppresses NADPH oxidase-mediated oxidative stress and expression of cellular adhesion molecules in mice treated with lipopolysaccharide (LPS). The objective of the present study was to investigate whether and how LPS and iron enhance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 49  شماره 

صفحات  -

تاریخ انتشار 1996